

CAIE Chemistry A-level

21: Organic Synthesis Notes

This work by PMT Education is licensed under CC BY-NC-ND 4.0

Synthetic Routes

Synthetic routes are the routes which can be used to produce a **certain product from a starting organic compound**. It is important that you understand the different methods and **conditions** required to convert compounds to other products.

Below is a table showing the typical reactions of different functional groups and how they can be identified.

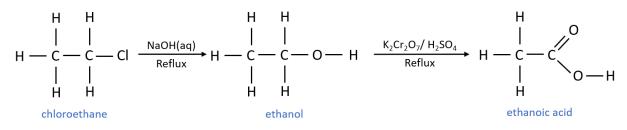
Homologous series	Typical reactions	Identification
Alkanes C-C	Combustion Electrophilic substitution/ free radical substitution with Br_2 or Cl_2 (forms haloalkanes)	
	Cracking (forms short chain alkenes and alkanes)	
Alkenes C=C	Electrophilic addition: - Steam (forms alcohols) - Hydrogen halides (forms haloalkanes) - Halogens (forms dihaloalkanes) - Hydrogen (forms alkanes)	React with bromine water: Decolorises in the presence of C=C.
	<i>Oxidation</i> with H⁺/MnO₄⁻ (forms diols)	
	Addition polymerisation (forms polymers)	
	Combustion	
Halogenoalkanes C-F/ C-Cl/ C-Br/ C-I	 Nucleophilic substitution: Hydrolysis (forms alcohols) Reaction with ethanolic cyanide (forms nitriles) Reaction with ammonia (forms primary amines) Elimination of hydrogen halide using ethanolic hydroxide ions (forms alkenes) 	React with AgNO ₃ (aq), test precipitate with NH ₃ (aq): AgCl - white ppt soluble in dilute NH ₃ (aq) AgBr - cream ppt soluble in concentrated NH ₃ (aq) AgI - yellow ppt insoluble in NH ₃ (aq)
Alcohols -OH	Combustion Substitution with hydrogen halides, sulfur dichloride oxide or phosphorus(III) halides (forms haloalkanes) Ethanol and sodium (forms sodium ethoxide and hydrogen gas) Oxidation with H ⁺ /Cr ₂ O ₇ ²⁻ (forms carbonyls and carboxylic acids) Dehydration using an acid catalyst (forms alkenes) Esterification with carboxylic acids or acyl chlorides	React with H ⁺ /Cr ₂ O ₇ ²⁻ : Colour change from orange to green in the presence of primary and secondary alcohols (no change for tertiary alcohols)

		[
Aldehydes -CHO	Oxidation with H ⁺ /Cr ₂ O ₇ ²⁻ (forms carboxylic acids) <i>Reduction</i> using NaBH₄ or LiAlH₄ (forms primary alcohols) <i>Nucleophilic addition</i> with HCN (forms hydroxynitriles)	React with 2,4-DNPH: A yellow-orange precipitate is formed in the presence of a carbonyl group. React with Tollens' reagent: A silver mirror is produced if an aldehyde is present.
		React with Fehling's reagent: The blue solution forms a brick red precipitate in the presence of an aldehyde
		React with acidified potassium dichromate(VI): Orange solution turns green.
Ketones RCOR'	Reduction using NaBH ₄ or LiAlH ₄ (forms secondary alcohols) Nucleophilic addition with HCN (forms hydroxynitriles)	React with 2,4-DNPH: A yellow-orange precipitate is formed in the presence of a carbonyl group.
Carboxylic acids -COOH	Reaction with metals, alkalis or carbonates (forms a salt and inorganic products)	Test pH: pH less than 7 when measured using a pH probe
	Esterification with alcohols Reduction with LiAlH₄ (forms alcohols) Reaction with SOCl₂ (forms acyl chlorides, sulfur dioxide and hydrochloric acid)	React with a carbonate : effervescence as CO ₂ is formed
	Reaction with phosphorus(V) chloride or phosphorus(III) chloride (forms acyl chlorides) <i>Oxidation</i> of methanoic acid using Fehling's or Tollens' (forms carbon dioxide and water)	
	Oxidation of ethanedioic acid using acidified potassium manganate(VII) (forms water and carbon dioxide)	
Esters RCOOR'	Acid hydrolysis (forms a carboxylic acid and an alcohol) Alkali hydrolysis (forms a carboxylate salt and an alcohol)	
Amines -NH ₂	Reaction with acids (forms a salt)	
Nitriles C≡N	<i>Acid hydrolysis</i> (forms a carboxylic acid and a salt) <i>Alkali hydrolysis</i> (forms a carboxylate salt and ammonia)	

🕟 www.pmt.education

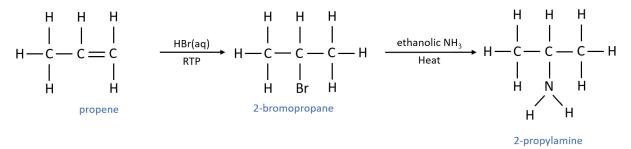
<u>_</u>

▶ Image: Second Second



Multi-Stage Synthesis

Some organic molecules can be prepared using a **multi-stage synthesis**. Typically, this involves two stages: reactant \rightarrow intermediate \rightarrow product. It can cover more stages.


Example 1

Below is a diagram showing how ethanoic acid can be formed from chloroethane:

Example 2

2-propylamine can be formed from propene as follows:

Analysing Synthetic Routes

When **synthesising** an organic compound, several factors are considered before deciding which synthetic route to use:

- **Type of reaction** addition reactions are more sustainable than substitution or elimination reactions as there are no waste products.
- Reagents renewable reagents with few safety concerns are preferred.
- **By-products** less harmful by-products are favoured as there would be fewer safety and environmental concerns. If the by-products can be used in another industry, the process is more sustainable.
- Conditions choose the reaction with the most energy efficient and safe conditions.

For an organic molecule containing several functional groups: (a) identify organic functional groups using the reactions in the syllabus (b) predict properties and reactions 2 devise multi-step synthetic routes for preparing organic molecules using the reactions in the syllabus 3 analyse a given synthetic route in terms of type of reaction and reagents used for each step of it, and possible by-products.

🕟 www.pmt.education

